二是提升材料性能。推力矢量发动机尾喷口越灵活、越严密,越有利于提升发动机推力效果。发动机尾流的温度可达1000℃以上,且气体压力高达几百千帕,普通金属会软化变形。因此,尾喷管的材料选用至关重要。
近年来,科研人员研发出多种新型复合材料。比如,选用高温耐火陶瓷基复合材料制作出的战机尾喷管,具有优异的热稳定性,可以承受1500℃高温,密度只有高温合金的1/3,强度却为其2倍,且结构耐久性好。
三是解决控制难题。众所周知,推力矢量发动机推力方向的变化会对飞机姿态产生重要影响。在飞行姿态大幅变化时,飞行员控制不好很容易造成战机失控。
对此,欧洲空客公司与发动机制造商斯奈克玛公司强强联手,共同研发出一种能够与战机完全集成的发动机系统。这种一体化推力矢量设计实现了战机和发动机的最佳匹配、各个气动舵面偏转与尾喷管偏转的完美配合,飞行员操作难度系数减小,飞行安全性和稳定性得以提升。
追求高效,推力矢量技术一直在升级
进入新世纪,越来越多的军事专家开始关注一个问题:随着空战模式转变,是不是每架战机都需要搭载推力矢量发动机?
以F-35战机为例,考虑到推力矢量发动机在尾喷口周围的机械结构可能会影响到战机的隐身性能,以及推力矢量技术带来的机动能力并不能掩盖超声速飞行的短板,最新型F-35C战机并没有选用推力矢量发动机。
这一现象剑指推力矢量发动机效费比问题。为适应战机隐身作战要求,推力矢量发动机化繁就简至关重要,精简偏转机构、减少调节板数量等改进措施成为升级推力矢量发动机的首选。目前,采用锯齿形和尖劈形结构的推力矢量发动机,雷达反射面积减小了一个数量级。