进入21世纪,美国研制出搭载扁平式矢量喷口的F-22隐身战机,俄罗斯则推出了“留里卡式”的新一代苏-35战机,机动能力更强。一时间,推力矢量发动机成为世界各国的竞逐赛场。时至今日,“美系”和“俄系”推力矢量发动机仍是各国战机仿制的主要选择。
航空界有句话:“只要发动机足够强劲,砖头都能飞上天。”近年来,推力矢量技术所提供的额外机动性和操纵能力已取代部分舵面的功能。目前,鉴于无尾翼设计的可行性,一些国家已将简化舵面列入六代机发展计划。由此可见,推力矢量技术发展将在科学家的探索下拥有更多可能。
“心脏”移植,实现战机和发动机最佳匹配
一款新型推力矢量发动机的研发技术再先进、图纸设计再完美,能不能试验成功,最终取决于发动机与战机的匹配程度。
2017年,日本国产“心神”战机在结束最后一次试飞后,宣布项目终止,前期庞大的资金投入化为乌有。有数据表明,“心神”战机所选用的XF5-1推力矢量发动机最大推力仅5吨,且超声速飞行干扰阻力过大,导致项目不得不提前“下马”。
半个多世纪以来,世界各国在研发推力矢量发动机过程中,反复验证技术的成熟度,不断提升发动机与战机的匹配度,直至达到定型标准。这一过程,科研人员着力解决推力矢量发动机的三大难题:
一是排除干扰隐患。战机执行超机动飞行动作时,推力矢量发动机尾喷口产生的喷流会直接作用在飞机的扰流板上,产生扰流效应。这可能会导致战机升力分布不均匀,抗失速能力和操纵稳定性减弱,增加飞行事故风险。
如何解决扰流问题?20世纪90年代,俄罗斯苏-30战机的设计师别出心裁地将2台AL-31F发动机搭载在机身后部与垂直尾翼相比较高的位置,使喷流远离战机扰流板;将发动机尾喷口设置为“外八字”偏转方向,有效减小扰流范围,飞行稳定性和操作安全性得到大幅增强。