从此,推力矢量技术得到推广,逐步应用到“海鹞”、AV-8B等多型战机。这些战机的喷气式发动机有共同的特点:拥有4个可以旋转的喷口,前面2个喷口喷出从压气机引出来的冷气,后面2个喷口喷出从燃烧室引出来的热气。在起降阶段,喷口旋转向下;在平飞巡航阶段,旋转向后。
随后几十年,美苏冷战刺激了航空工业发展,具备空中作战优势的三代机成为各国空军主力战机。“鹞”式战机虽然具备垂直起降优势,但“飞马”发动机旋转喷管机构超重,战机操纵难度大,逐渐沦为战场配角。英阿马岛海战,英军损失了数十架“鹞”式战机。一时间,推力矢量技术的可行性遭受质疑。
无巧不成书。恰逢美苏太空争霸,德国一家公司科研人员在火箭发射中找到创新灵感:火箭喷口处安装可控折流板,可以偏转喷气流从而操纵火箭飞行姿态,战机发动机能否装上这种折流板?
科研人员很快将设想付诸实践。1990年,X-31试验机诞生,该战机发动机尾喷口装有3块碳纤维复合材料舵面。在试飞员的操纵下,X-31试验机以70度大迎角飞向蓝天,创下过失速机动能力的新纪录,一时间震惊世界。
当时,安装折流板无需对发动机进行重新设计,在现役战机改装方面展现出独特优势。不过,科研人员很快发现加装折流板的一个致命缺陷:机械机构外廓尺寸和重量较大,导致战机在超声速飞行时推力减弱。
如何提升推力矢量发动机效率?当时,美国和苏联给出了不同答案:美国普惠公司选择将尾喷管“捏扁”,用4块调节板打造矩形二元矢量喷口,以降低超声速飞行时的阻力;苏联留里卡设计局将周向鱼鳞片用“束带”固紧尾喷口管道,通过液压系统操纵喷口全向摆动,实现柔性偏转。