通常而言,陆上寻找撞击点相对容易,而发生海上坠机事故,确定撞击点就复杂得多。往往需要从发现飞机残骸开始。由于发现残骸的海域多数情况下并非飞机坠海的第一现场,因此在发现残骸碎片之后,便需要通过数学模型来确定飞机主体坠海更为精确的区域。在明确撞击点后,再在以撞击点为中心的相关区域进行搜索。如果落入水中,黑匣子上的水下定位信标(ULB)会以每秒一次的频率发送载频为37.5KHz的音频信号。在2014年7月1日之后制造的飞机上,信标工作约90天(之前为30天)。在90天内,可利用专门的被动声呐搜索。
黑匣子在水下定位主要依靠水下定位信标。它是一个电池供电的水下超声波脉冲发生器,安装在黑匣子外部。一旦黑匣子入水,信标上的水敏开关启动信标工作,通过信标的金属外壳把频率为37.5kHz的超声波信号发射到周围水域,每秒一个脉冲。信标可以在6096米的深度内发出超声波,但在距离信标1800-3600米的范围内才能被仪器探测到,海水的状态、周围的船只、海洋动物、石油管道等都会影响信标的被探测范围。
如果90天过后仍未找到黑匣子,并不意味着已丝毫没有希望。因为黑匣子通常距离残骸主体不远,甚至多数情况下会位于飞机的主体残骸上。2009年6月1日失事的法航客机的黑匣子,实际上就是通过打捞飞机的主体残骸找到的。因此,如果能确定客机主体残骸坠落区域,那么搜索工作就要以主动声呐和水下电视为主,并通过对客机主体残骸的搜索带动对黑匣子的探测。
读取黑匣子数据非常关键
找到黑匣子之后,如何从中读取记录的数据是极为重要的一个环节。由于空难造成的严重撞击,如何保证数据不被损坏?数据读取这个步骤又需要哪些环节呢?