二是拦阻钩和支撑结构。一些舰载机要在较短距离内由较大着舰水平速度变为停止状态,必须依靠拦阻系统。具体过程是:着舰的舰载机使用拦阻钩挂住拦阻索,拦阻装置中的液压缓冲装置开始工作,最终将舰载机“拉住”。以美国MK-73型拦阻索缓冲器为例,它可以使30多吨重的舰载机在着舰后滑跑91.5米后停止。显然,这一过程中,舰载机尤其是拦阻钩不得不面对巨大的拦阻载荷。为此,拦阻钩和与之相连的支撑结构必须加以强化,既要能承受住瞬间大能量的冲击,又不能因此导致舰载机重量的猛增。这无疑对设计者提出了很高要求。
三是折叠机翼。为节省空间、增加载机数量,舰载机的机翼往往被设计成可折叠结构,这让一些中型航母也能够配备重型战斗机。这种设计意味着必须通过作动筒来驱动机翼折叠和打开,这又会导致机翼分离面的强度不足。加之受到机翼油箱油量、挂点挂载量以及甲板风载等因素的影响,使得折叠机翼对强度的要求更高。法国在设计“阵风”-M舰载战斗机时,就因为三角翼的特殊性而放弃了折叠机翼。苏-33舰载机在设计时不但增加了前翼,还把整体襟副翼改为双缝襟翼和翼尖部分的单独副翼,在双缝襟翼之间设计机翼折叠机构,以满足在航母上起降时对机翼的强度需求。
澎湃动力是基础
大推力航空发动机对于舰载机来说至关重要。与陆基战斗机相比,舰载机对发动机的需求通常包括更大的推力/功率和更好的加速性,同时还要平衡重量、耗油率、结构、尺寸之间的关系。在舰载使用条件下,发动机对电磁兼容性、油料和维护保障资源的要求更为严格,海洋环境下的防腐蚀性能也同样重要。
如此多的高要求叠加在舰载机发动机研制过程中,使其研制难度更大、周期更长。在这方面,一些国力雄厚的国家也很难取得多少突破。因此,在舰载机研制时,通用的做法是优先选择技术成熟的发动机,或者在技术成熟的发动机基础上发展能满足海军需求特点的发动机。法国“阵风”-M舰载机最初采用的是F404发动机,后来由其国产的斯奈克M88涡扇发动机代替前者。但是,为了减少对飞机平台的改动,斯奈克M88涡扇发动机的总体性能、外廓尺寸、安装接口等都被要求与F404发动机尽量保持相同。