于是,重复使用火箭便应运而生。重复使用火箭的概念是相对于一次性使用火箭而言的,特指从地面起飞完成预定发射任务后,全部或部分返回并安全着陆,经过检修维护与燃料加注,可再次执行发射任务的火箭。
目前,火箭回收有三种主流方案:伞降回收、垂直回收和带翼飞回。
伞降回收,即在火箭一级发动机工作结束并完成级间分离返回后,在低空采用降落伞减速,最后通过气囊缓冲着陆或者直升机钩住带回地面。然而,这种方式不仅对着陆地形有要求,也无法实现火箭的定点着陆,且火箭落地后发动机也会随之报废,与真正意义上的“回收利用”有较大差距。这种方案与飞船返回舱的回收类似。美国联合发射联盟公司的火神火箭拟采用伞降回收方案,由直升机在空中实现回收,但截至目前还未实现。
垂直回收,是在低空采用发动机反推减速并调整至指定地点的回收方案。采用垂直回收的典型代表,是美国太空探索技术公司(SpaceX)的猎鹰9号火箭。该火箭于2015年成功实现第一级火箭回收,也成为全世界首个实现第一级火箭回收的轨道飞行器。然而,以垂直下降方式降落地面,必须提前为发动机反推预留推进剂,这会对火箭运载能力造成一定的损失。
带翼飞回,是利用空气动力使火箭像飞机一样滑翔降落。这种方案对火箭总体设计和返回控制技术要求较高。俄罗斯提出的贝加尔号有翼助推器方案就是典型的带翼回收方案,贝加尔号为第一级带翼飞回式助推器,可以像飞机一样着陆。然而,带翼飞回需要为火箭增加机翼、起落架等结构,这些结构重量等因素会使火箭运载能力损失约40%。
与伞降回收和带翼飞回相比,垂直回收飞行载荷小、着陆精度高,并且对火箭自身结构设计的改动最小,在三种回收方式中经济应用价值最高。垂直回收方案目前已经成为各国航天工程师研究的热点。