歼-10采用鸭式布局,翼身融合。通过精心设计主翼与机身中部结合处的曲面,既增加了机内容积(用于载油、装备,以及为尔后发展预留空间),也有效利用了它带来的空气动力增升效果。主翼后部机身两侧没有安排其他结构,这再次体现了翼身融合的设计理念,只是在尾喷管前端机腹下加装了两片外斜腹鳍。这两片腹鳍用于战机大迎角飞行时,配合高大的垂直尾翼保持飞机的稳定性。与“狮”相同的是,歼-10也设计了四片减速板,其中两片位于机身上部主翼后方,其余两片仅位于机尾下部腹鳍之间。
歼-10的进气道位于机腹下,由调节板(位置在边界层分离板的后方)构成进气道的前部,这为发动机提供了不同飞行状态所需的气流,更加适合高性能空中作战。此外,可调节进气道所增加的高效整流压缩能力(在1.5马赫时为5%,在1.8马赫增加至15%,在2马赫时为25~30%)极大地提高了飞机超音速飞行时的发动机推力,从而使飞机获得更好的爬升和高速性能。这种进气道布局的不足主要包括隐身效果欠佳(这也是所有机腹进气道布局飞机的通病)、重量偏大且结构复杂(F-16为此增重80~100公斤)和生产费用增加,同时调节板的动力和调节系统还加大了飞机的维护负担。
在结构和制造工艺方面,歼-10翼身融合体和大三角翼布局使得内部油箱的容积增大,有助于改善中国战斗机航程短的问题。北京航空制造工程研究所承担了歼-10的复合材料构件制造、钛合金热成形、框肋类零件数控加工、机翼壁板抛丸成形以及计算机辅助制造(CAM)软件开发、蜂窝芯建模等任务,同时提供复合材料树脂和蜂窝芯。上述工作,对中国发展复合材料蜂窝夹芯构件设计与制造技术起到了推动作用。1998年首飞后,该所荣获“首飞集体功”。